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Abstract
Recently, tensor decompositions have attracted increasing attention and shownpromising per-
formance in processingmulti-dimensional data. However, the existing tensor decompositions
assume that the correlation along one mode is homogeneous and thus cannot characterize the
multiple types of correlations (i.e., heterogeneous correlation) along the mode in real data. To
address this issue, we propose a heterogeneous tensor product that allows us to explore this
heterogeneous correlation, which can degenerate into the classic tensor products (e.g., mode
product and tensor–tensor product). Equipped with this heterogeneous tensor product, we
develop a generalized tensor decomposition (GTD) framework for third-order tensors, which
not only induces many novel tensor decompositions but also helps us to better understand
the interrelationships between the new tensor decompositions and the existing tensor decom-
positions. Especially, under the GTD framework, we find that new tensor decompositions
can faithfully characterize the multiple types of correlations along the mode. To examine the
effectiveness of the new tensor decomposition, we evaluate its performance on a represen-
tative data compression task. Extensive experimental results on multispectral images, light
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field images, and videos compression demonstrate the superior performance of our developed
tensor decomposition compared to other existing tensor decompositions.

Keywords Heterogeneous tensor product · Generalized tensor decomposition · Data
compression

1 Introduction

Tensors [6, 10, 41], as multi-dimensional extensions of matrices, can naturally represent
the complex intrinsic structures of high-order data. This characteristic has drawn significant
attention in recent years, making tensor analysis increasingly important in various fields,
such as numerical linear algebra [4, 24, 28, 30], graph analysis [11, 15], image processing
[14, 16, 25, 42, 45], and computer vision [7, 12, 34]. Within these literatures, the process-
ing and analysis of multi-dimensional data primarily rely on a powerful tool, i.e., tensor
decomposition.

Recently, various tensor decompositions, generalized from the matrix singular value
decomposition (SVD), have been widely studied and applied. As is well-known, the SVD
can represent a matrix as the sum of a series of rank-1 matrices. Analogously, the CAN-
DECOMP/PARAFAC (CP) decomposition [5, 13, 21] aims to represent a tensor as the sum
of a finite number of rank-1 tensors. Another convincing multi-linear generalization of the
SVD is the higher-order singular value decomposition (HOSVD), which expresses a tensor
as a core tensor multiplied by a factor matrix along each mode. The key point of departure
is that the mode product treats the vector (i.e., one column of the factor matrix) in a similar
way as the SVD does for the left and the right singular vectors. Furthermore, HOSVD is also
commonly referred to as Tucker decomposition [36, 37]. Subsequently, the tensor singular
value decomposition (T-SVD) [18, 19] is proposed, which regards a third-order tensor as a
matrix with each element being a tube. This tube-based strategy enables T-SVD to take a
similar form to the matrix SVD by decomposing a third-order tensor into the tensor-tensor
product (T-product) of three third-order tensors, with two of them being orthogonal tensors
and one being the diagonal tensor[23, 31, 32]. Later, Tk-product and generalized T-SVD (see
Definitions 2 and 4) are proposed, which allows us to handle interactions flexibly among
slices of different modes [40, 46].

More recently, tensor network (TN)-based decompositions, inspired by the graph repre-
sentation, have garnered significant interest. Themost well-known one is the tensor train (TT)
decomposition [3, 27, 43], which breaks down a tensor into sequential multi-linear products
over a sequence of factors with matrices as the first and last factors and third-order tensors as
the intermediate factors. TT decomposition can serve as the building block for other complex
tensor networks (e.g., tensor ring (TR) decomposition [29, 44] and fully-connected tensor
network (FCTN) decomposition [47]) due to its simple form. In the quantum physics com-
munity, the TT format is frequently referred to as the matrix product state representation [33,
38].

The existing tensor decompositions only consider a single type of correlation (i.e., homo-
geneous correlation) along one mode. However, real data typically exhibit multiple types of
correlations (i.e., heterogeneous correlation) alongonemode.Taking a light field imagedishes
as an example, we illustrate its heterogeneous correlation along mode-3 in Fig. 1. Figure1a
displays the singular value curve of the mode-3 unfolding matrix of data X ∈ R

128×128×243,
which reveals the correlation along mode-3. This type of correlation can be characterized
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Fig. 1 The illustration of heterogeneous correlation of the light field image dishes along mode-3

Fig. 2 The illustration of GTD framework

by the mode-3 product, i.e., X = Y ×3 H . Moreover, the factor Y ∈ R
128×128×40 exhibits

another type of correlation along mode-3, as shown in Fig. 1b. The more faithful characteri-
zation of the heterogeneous correlation can lead to better performance of multi-dimensional
data processing. Therefore, a natural question is can we construct new tensor product and
tensor decomposition that more accurately capture this heterogeneous correlation along the
mode of multi-dimensional data?

To address this challenge, we define a heterogeneous tensor product that allows us to better
characterize the heterogeneous correlation. Leveraging this product,we develop a generalized
tensor decomposition (GTD) framework. More specifically, the main contributions of this
work are twofold.

– To faithfully characterize the heterogeneous correlation along one mode, we establish a
heterogeneous tensor product, which can degenerate into the mode product and the Tk-
product. Based on this product, we develop aGTD framework that not only deliversmany
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Fig. 3 The compression ratio with respect to relative error of the reconstructed results by different methods
on the multispectral images

novel tensor decompositions but also helps us to better understand the interconnections
between these new tensor decompositions and the classic tensor decompositions.

– To verify the effectiveness of the new tensor decomposition within the GTD framework,
we examine its performance on the representative data compression task. We propose
a corresponding algorithm for the decomposition and conduct extensive compression
experiments on multispectral images, light field images, and videos. The results demon-
strate the superior compression performance of our developed new tensor decomposition
as compared to the existing tensor decompositions.

The outline of this paper is as follows. We begin by summarizing the notations and
preliminaries in Sect. 2. Then, we define the heterogeneous tensor product and analyze the
relationship between this product and two classic tensor products in Sect. 3. Based on the
proposed heterogeneous tensor product, we develop aGTD framework in Sect. 4.We consider
a data compression task to examine the new tensor decompositionwithin theGTD framework
in Sect. 5. We conduct extensive numerical experiments to evaluate the performance of the
new tensor decomposition in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Tensor Preliminaries

Before presenting the main body of this paper, we summarize the notations in Table 1 and
provide preliminaries about tensor products and tensor decompositions.

2.1 Two Classic Tensor Products

In this subsection, we review two classic tensor products, including mode product and Tk-
product.

Definition 1 (Mode product [8]) The mode product of a tensor X ∈ R
I1×I2×···×IM by a

matrix Y ∈ R
Jm×Im (m ∈ {1, 2, . . . , M}), denoted by X ×m Y , is a tensor of size I1 × I2 ×

· · · × Im−1 × Jm × Im+1 × · · · × IM , whose elements are defined as

(X ×m Y)i1i2···im−1 jm im+1···iM =
Im∑

im=1

Xi1i2···im−1im im+1···iMY jm im . (1)
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Definition 2 (Tk-product [40]) The T1-product of a tensor X ∈ R
I1×I2×R1 and a tensor

Y ∈ R
I1×R1×I3 , denoted by X ∗1 Y , is a tensor of size I1 × I2 × I3, whose mode-1 fibers are

defined as

(X ∗1 Y)(:, i2, i3) =
R1∑

r1=1

X (:, i2, r1)�LY(:, r1, i3). (2)

TheT2-product of a tensorX ∈ R
I1×I2×R2 and a tensor Y ∈ R

R2×I2×I3 , denoted byX ∗2Y ,
is a tensor of size I1 × I2 × I3, whose mode-2 fibers are defined as

(X ∗2 Y)(i1, :, i3) =
R2∑

r2=1

X (i1, :, r2)�LY(r2, :, i3). (3)

The T3-product of a tensorX ∈ R
I1×R3×I3 and a tensor Y ∈ R

R3×I2×I3 , denoted byX ∗3Y ,
is a tensor of size I1 × I2 × I3, whose mode-3 fibers are defined as

(X ∗3 Y)(i1, i2, :) =
R3∑

r3=1

X (i1, r3, :)�LY(r3, i2, :), (4)

where the T-product of two fibers is x�L y = L−1((Lx) � (L y)), L is an invertible matrix,
and � denotes Hadamard product.

Recently, some structured invertiblematrices L have been studied, such as discrete Fourier
transform (DFT) matrix [19], discrete cosine transform (DCT) matrix [17], and wavelet
transform matrix [35].

2.2 Three Classic Tensor Decompositions

In this subsection, we review three classic tensor decompositions, including HOSVD, gener-
alized T-SVD, and TT decomposition. To facilitate understanding, this paper mainly focuses
on the third-order tensors.

Definition 3 (HOSVD [9]) A tensor X ∈ R
I1×I2×I3 can be factored as the mode product

X = C ×1 F ×2 G ×3 H, (5)

where F ∈ R
I1×R1 , G ∈ R

I2×R2 , and H ∈ R
I3×R3 are column-orthogonal matrices, and

C ∈ R
R1×R2×R3 is the core factor.

Definition 4 (Generalized T-SVD [40]) A tensor X ∈ R
I1×I2×I3 can be factored as the

generalized Tk-product
X = Uk ∗k Sk ∗k VTk

k , k = 1, 2, 3, (6)

in which

1. Uk and Vk are mode-k orthogonal tensors,
2. Sk is mode-k diagonal tensor that each of its mode-k slices is a diagonal matrix.

(i) mode-k conjugate transpose: The mode-k conjugate transpose of X , denote by
X Tk , is obtained by conjugate transposing each of the mode-k slices and then
reversing the order of transposed mode-k slices 2 through Nk .
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(ii) orthogonality: tensor X is mode-k orthogonal if

X ∗k X Tk = X Tk ∗k X = Ik, (7)

where Ik is identity tensor that its first mode-k slice is an identity matrix and other
mode-k slices are all zeros.

Definition 5 (TT decomposition [27]) A tensor X ∈ R
I1×I2×I3 can be factored as

X = C ×1 F ×3 H, (8)

where F ∈ R
I1×R1 , C ∈ R

R1×I2×R2 , and H ∈ R
I3×R2 are called canonical factors.

The forms of tensor products and tensor decompositions introduced above are quite dis-
tinct. This gives rise to two intriguing questions: (i) Can we devise a tensor product and
decomposition that encompasses the aforementioned tensor products and decompositions?
(ii) In the framework of this newly constructed tensor product and decomposition, is it possi-
ble to analyze the relationships between the classic tensor products aswell as the relationships
among the classic tensor decompositions?

3 The Heterogeneous Tensor Product

To address the above problems, we define a heterogeneous tensor product that can degenerate
into the classic tensor products. Additionally, we detailedly analyze the relationships between
this heterogeneous tensor product and the classic tensor products.

We first introduce the heterogeneous tensor product that extends the classic mode product
and Tk-product.

Definition 6 (Mode permutation) The m-mode permutation (m ∈ {1, 2, . . . , M}) of an
M th-order tensor X ∈ R

I1×···×Im−1×Im+1×···×IM×Im is defined as tensor
−→X m with size I1 ×

· · · × Im−1 × Im × Im+1 × · · · × IM , whose elements obey
−→X m

i1···im−1im im+1···iM = Xi1···im−1im+1···iM im . (9)

Definition 7 (Heterogeneous tensor product) Given an M th-order tensor X ∈ R
I1×I2×···×IM

and an N th-order tensor Y ∈ R
J1×J2×···×JN with d common modes (1 ≤ d ≤ min(M, N ),

d ∈ Z). Assume that two vectors m = (m1,m2, . . . ,mM ) and n = (n1, n2, . . . , nN )

respectively indicate the recording of vectors (1, 2, . . . , M) and (1, 2, . . . , N ), satisfying
Iml = Jnl for l = 1, 2, . . . , d , md+1 < md+2 < · · · < mM , and nd+1 < nd+2 < · · · < nN .
Then the heterogeneous tensor product between X and Y , denoted as X � Y ,1 is defined
as

X � Y = −→Z md−1 ,Z(imd+1 , . . . , imM , jnd+1 , . . . , jnN , :)

=
Imd∑

imd =1

�
(
X̂ (imd , imd+1 , . . . , imM , :) , Ŷ(imd , jnd+1 , . . . , jnN , :)

)
,

(10)

where X̂ (imd , imd+1 , . . . , imM , :) is a fiber of tensor X̂ with size Im1 Im2 · · · Imd−1 , X̂ denotes
the permutation of X satisfying X̂imd imd+1 ···imM im1 ···imd−1

= Xid id+1···iM i1···id−1 , and �(x, y)
denotes the product of fibers x and y.

1 If d = 1,
−→Z md−1 is assume to

−→Z m1 .
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Considering different vector products (i.e., �(x, y)) in Definition 7 delivers various ten-
sor products. In the following, we detailedly show how the heterogeneous tensor product
degenerates into the classic tensor products. The following lemmas present our conclusions.

Lemma 1 The heterogeneous tensor product can degenerate into the mode product.

Proof Given an M th-order tensorX ∈ R
I1×I2×···×IM and a second-order tensor Y ∈ R

Jm×Im

with one commonmode (i.e., d = 1). Assume thatm = (m, 1, 2, . . . ,m−1,m+1, . . . , M),
n = (2, 1), and�(x, y) denotes the inner product of vectors x and y, then the heterogeneous
tensor product between X and Y is

(X � Y)i1i2···im−1 jm im+1···iM = −→Z m
i1i2···im−1 jm im+1···iM

= Zi1···im−1im+1···iM jm =
Im∑

im=1

�(X̂im i1···im−1im+1···iM , Ŷim jm )

=
Im∑

im=1

X̂im i1···im−1im+1···iM Ŷim jm =
Im∑

im=1

Xi1i2···im−1im im+1···iMY jm im

= (X ×m Y)i1i2···im−1 jm im+1···iM .

(11)

Equation (11) verifies that the heterogeneous tensor product and the mode product are
consistent when �(x, y) is the inner product of vectors x and y. ��
Lemma 2 The heterogeneous tensor product can degenerate into the generalized Tk-product.

Proof The proof is divided into three parts, in which we demonstrate that the heterogeneous
tensor product can respectively degenerate into T1-product, T2-product, and T3-product.

(i) The heterogeneous tensor product can degenerate into the T1-product:
Given a third-order tensor X ∈ R

I1×I2×R1 and a third-order tensor Y ∈ R
I1×R1×I3 with

two common modes (i.e., d = 2). Assume that m = (1, 3, 2), n = (1, 2, 3), and �(x, y)
denotes the T-product of vectors x and y, then the heterogeneous tensor product between X
and Y is

(X � Y)(:, i2, i3) = −→Z 1(:, i2, i3) = Z(i2, i3, :)

=
R1∑

r1=1

�(X̂ (r1, i2, :) , Ŷ(r1, i3, :)) =
R1∑

r1=1

X (:, i2, r1)�LY(:, r1, i3)

= (X ∗1 Y)(:, i2, i3).

(12)

(i i) The heterogeneous tensor product can degenerate into the T2-product:
Given a third-order tensor X ∈ R

I1×I2×R2 and a third-order tensor Y ∈ R
R2×I2×I3 with

two common modes (i.e., d = 2). Assume m = (2, 3, 1), n = (2, 1, 3), and�(x, y) denotes
the T-product of vectors x and y, then the heterogeneous tensor product between X and Y is

(X � Y)(i1, :, i3) = −→Z 2(i1, :, i3) = Z(i1, i3, :)

=
R2∑

r2=1

�(X̂ (r2, i1, :) , Ŷ(r2, i3, :)) =
R2∑

r2=1

X (i1, :, r2)�LY(r2, :, i3)

= (X ∗2 Y)(i1, :, i3).

(13)

(i i i) The heterogeneous tensor product can degenerate into the T3-product:
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Given a third-order tensor X ∈ R
I1×R3×I3 and a third-order tensor Y ∈ R

R3×I2×I3 with
two common modes (i.e., d = 2). Assume m = (3, 2, 1), n = (3, 1, 2), and�(x, y) denotes
the T-product of vectors x and y, then the heterogeneous tensor product between X and Y is

(X � Y)(i1, i2, :) = −→Z 3(i1, i2, :) = Z(i1, i2, :)

=
R3∑

r3=1

�(X̂ (r3, i1, :) , Ŷ(r3, i2, :)) =
R3∑

r3=1

X (i1, r3, :)�LY(r3, i2, :)

= (X ∗3 Y)(i1, i2, :).

(14)

Equations (12)–(14) verify that the heterogeneous tensor product and the Tk-product are
consistent when �(x, y) is the T-product of vectors x and y. ��

Now, we restate the relationship between the Tk-product and the mode product [40],
which helps us better understand the relationship between tensor decompositions within the
proposed GTD framework, as discussed in the subsequent section.

Lemma 3 The Tk-product can degenerate into the mode product.

Proof Suppose that C ∈ R
R1×R2×R3 , F ∈ R

I1×R1 , F ∈ R
I1×R2×R1 , F̂ ∈ R

I1×R1×R3 , G ∈
R

I2×R2 , G ∈ R
R2×I2×R3 , Ĝ ∈ R

R1×I2×R2 , H ∈ R
I3×R3 , H ∈ R

R1×R3×I3 , Ĥ ∈ R
R3×R2×I3 ,

if the following constraints

F(1)
2 = F, F(2)

2 = · · · = F(R2)
2 = 0, F̂

(1)
3 = F, F̂

(2)
3 = · · · = F̂

(R3)

3 = 0, (15)

G(1)
3 = GT , G(2)

3 = · · · = G(R3)
3 = 0, Ĝ

(1)
1 = G, Ĝ

(2)
1 = · · · = Ĝ

(R1)

1 = 0, (16)

H(1)
1 = HT , H (2)

1 = · · · = H(R1)
1 = 0, Ĥ

(1)
2 = HT , Ĥ

(2)
2 = · · · = Ĥ

(R2)

2 = 0, (17)

are satisfied, the Tk-product can degenerate into the mode product
{
F ∗2 C = C ×1 F,

F̂ ∗3 C = C ×1 F,

{
C ∗3 G = C ×2 G,

Ĝ ∗1 C = C ×2 G,

{
C ∗1 H = C ×3 H,

C ∗2 Ĥ = C ×3 H .
(18)

where F(i)
1 , F(i)

2 , and F(i)
3 denote the i th horizontal slice, lateral slice, and frontal slice of

tensor F , respectively. ��
These lemmas possess significant values. Specifically, they serve three purposes: (i) They

can inspire some new forms of tensor decomposition. For instance, in HOSVD (i.e., C ×1

F×2 G×3 H), we can replace C×1 F withF ∗2 C, resulting in a novel tensor decomposition
F ∗2 C ×2 G ×3 H ; (ii) Additionally, by establishing the connections among these tensor
products, we can explore the relationships between tensor decompositions based on different
tensor products; (iii) By inserting inner product or T-product of vectors, this heterogeneous
tensor product degenerates into the mode product and the Tk-product, which inspires us to
consider other suitable vector products to design new tensor products.

4 The GTD Framework

With the heterogeneous tensor product, we develop a GTD framework. For easier analysis,
the GTD framework is mainly established on third-order tensors. This framework not only
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encompasses the classic tensor decompositions as special cases but also induces numer-
ous novel tensor decompositions. Furthermore, this framework helps us to understand the
relationships among these tensor decompositions, including the classic and novel tensor
decompositions.

Definition 8 (GTD framework) A tensor X ∈ R
I1×I2×I3 can be factored as

X = G1 � G2 � · · · � GK , (19)

where Gk (k = 1, 2, . . . , K ) are the factors. These factors can be third-order tensors or
matrices with matched dimensions.

Remark 1 We can further impose constraints on certain factors, such as requiring the factors
to be orthogonal, sparse, or diagonal.

For simplicity, we focus on the GTD framework containing four factors, i.e., X = F �
C � G �H. Among these factors, C ∈ R

R1×R2×R3 is referred to as the core factor. The GTD
framework with four factors is illustrated in Fig. 2.

Figure 2 shows how the GTD framework degenerates into the classic tensor decomposi-
tions. For example, when the four factors are all third-order tensors, the heterogeneous tensor
products degenerate into T3-product, and C and H are f-diagonal tensor and identity tensor
respectively, the decomposition X = F � C � G � H degenerates into T-SVD.

Furthermore, this GTD framework allows us to explore many new tensor decompositions.
We systematically consider the new tensor decompositions from three aspects according
to the relationships between heterogeneous tensor product, Tk-product, and mode product
revealed by Lemmas 2 and 3.

(i) All heterogeneous tensor products in GTD frameworkX = F �C�G�H degenerate
into the Tk-product. In this context, there are some implicit constraints, such as the require-
ment that the two tensors involved in the Tk-product must have two common dimensions
and the size requirement of the core factor (i.e., C ∈ R

R1×R2×R3 ). Therefore, it is difficult
to directly consider these tensor decompositions. But fortunately, by applying the inverse
process of Lemma 3, which extends the mode product in the Tucker decomposition into the
Tk-product, we can quickly derive these new tensor decompositions:

X = F ∗2 C ∗3 G ∗1 H, X = F ∗2 C ∗3 G ∗2 H,

X = F ∗2 C ∗2 G ∗3 H, X = F ∗2 C ∗1 G ∗3 H,

X = F ∗3 C ∗3 G ∗1 H, X = F ∗3 C ∗3 G ∗2 H,

X = F ∗3 C ∗2 G ∗3 H, X = F ∗3 C ∗1 G ∗3 H.

(20)

We see that there are only eight forms of tensor decomposition rather than twenty seven (33).
(ii) Based on (i), some but not all Tk-product degenerate into mode product. According to

Lemma 3, each decomposition in Eq. (20) can induce many degenerated forms. For instance,
X = F ∗3 C ∗3 G ∗1 H can degenerate into:

X = C ×1 F ∗3 G ∗1 H, X = F ∗3 C ×2 G ∗1 H, X = F ∗3 C ∗3 G ×3 H . (21)

By applying Lemma 1 once more, the decompositions in Eq. (21) then degenerate into:

X = F ∗3 C ×2 G ×3 H, X = C ×1 F ∗3 G ×3 H, X = C ×1 F ×2 G ∗1 H. (22)

(iii) Based on (ii), all Tk-product degenerates into mode product. Then the decomposition
is classic Tucker decomposition.
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Fig. 4 Reconstructed results of multispectral images by different methods under compression ratio 0.8. From
top to bottom: the odd-numbered rows are the visual results of toy, cloth, and feather, respectively; the
even-numbered rows are the corresponding residual images average over three color channels

Under the GTD framework, we can obtain many new tensor decompositions with three
factors by simply multiplying the first two factors of the tensor decompositions containing
four factors. For example, X = F ∗3 C ∗1 G ∗3 H can be rewritten as X = F̂ ∗1 G ∗3 H with
F̂ = F ∗3 C; X = F ∗3 C ∗3 G×3 H can be rewritten as X = F̂ ∗3 G×3 H with F̂ = F ∗3 C;
and X = C ×1 F ×2 G ×3 H can be rewritten as X = Ĉ ×2 G ×3 H with Ĉ = C ×1 F.

Remark 2 For real data, it is crucial to find a suitable or optimal GTD within the GTD
framework. We can determine a suitable or optimal GTD using heuristic algorithms (e.g.,
genetic algorithm [2, 22]). For example, by employing genetic algorithm, we can encode
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different tensor products into binary strings and search for an optimal GTD that achieves the
highest compression ratio or recovered PSNR value on Hamming space.

5 Representative Application

This GTD framework not only helps us to better understand the interconnection between the
separated tensor decompositions but also delivers new tensor decompositions for different
tasks (e.g., data compression and recovery).

Algorithm 1 The data compression algorithm

Input: A tensor X ∈ R
I1×I2×I3 and the prescribed relative error ε;

1: Compute truncation threshold δ = ε‖X‖F/
√
2;

2: Low-rank approximation by applying δ-truncated SVD along the third mode:

X<3> = U3�3V3
T + E1, H = U3;

3: Compute X̂ = X ×3 HT ;
4: Compute the δ-truncated T-SVD of X̂ , i.e., X̂ = F ∗3 C ∗3 G + E2;
5: Compute F̂ = F ∗3 C;
Output: Factors F̂ ∈ R

I1×R1×R2 , G ∈ R
R1×I2×R2 , H ∈ R

I3×R2 , and compression ratio.

Here, we consider the multi-dimensional data compression task as an example. For multi-
dimensional data, such as multispectral image, light field image, and video, it has significant
low-rankness along the third mode. We mainly exploit this feature to compress data. As
shown in Fig. 1, the multi-dimensional data typically exhibits multiple types of correlations
along the third mode, where the correlation shown in Fig. 1a can be characterized by the
mode-3 product, i.e., X = Y ×3 H and the correlation shown in Fig. 1b can be characterized
by the T3-product, i.e., Y = F ∗3 G. Therefore, this work empirically utilizes the GTD
X = F ∗3G×3H within the GTD framework to compressmulti-dimensional data, especially
for data with obvious low-rankness in the third mode. To solve this decomposition, we design
a corresponding algorithm. The algorithm can be divided into two steps: the first step is to
decompose the data as follows: X ≈ X̂ ×3 H ; the second step is to perform T-SVD on X̂ .
The accompanying data compression algorithm is summarized in Algorithm 1.

6 Numerical Experiment

In this section, we conduct extensive numerical experiments to verify the effectiveness of the
proposed data compression algorithm. To objectively evaluate the compression performance
of the algorithm, we consider four classic tensor decompositions-based compression algo-
rithms for comparison: HOSVD (Section 3 in [9]), T-SVD (Algorithm T-Compress in [18]),
TT-SVD (Algorithm 2 in [27]), and TR-SVD (Algorithm 1 in [44]). It should be noted that all
the compared algorithms and the suggested algorithm have no parameters. By inputting the
prescribed relative error ε, we can obtain the final compression ratios of the corresponding
algorithms. The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)
[39] are employed tomeasure the quality of reconstruction. In addition, the compression ratio
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Fig. 5 The compression ratio with respect to relative error of the reconstructed results by different methods
on the light field images

is defined as

compression ratio(↑) = 1 − numel(Stored factors)

numel(Whole data)
, (23)

where numel(·) denotes the number of elements. Moreover, we theoretically analyze the
compression ratio and computational complexity of different decomposition algorithms in
Table 2 for comparison.

The experiments for the HOSVD and the T-SVD are based on Matlab Tensor Toolbox,
version 3.0 [20]. Additionally, all data is normalized into [0,1] band-by-band. All compu-
tations are performed in MATLAB (R2019a) on a computer of 64Gb RAM and Intel(R)
Core(TM) i9-10900KF CPU: @3.60 GHz.

6.1 Multispectral Images Compression

We conduct experiments on three multispectral images,2 each with a size of 256× 256× 31,
to evaluate the performance of the proposed method.

Figure 3 shows the compression ratio with respect to relative error of the reconstructed
results by different methods. It is evident that the proposed compression algorithm outper-
forms the comparedmethods for overall relative errors. The T-SVDmethod achieves a higher
compression rate than other comparison methods when the relative error is low, and the com-
pression rate is lower than other comparison methods when the relative error is high. T-SVD
utilizes T-product to characterize the correlation in the third mode, while HOSVD and TT
decomposition use mode product to characterize the correlation in the third mode. However,
these decompositions cannot faithfully capture this multiple types of correlations in the third
mode. Tensor decomposition X = F ∗3 C ∗3 G ×3 H can compensate for the defect of these
methods, significantly improving the compression ratio.

Furthermore, Fig. 4 shows the reconstructed results (the first, third, and fifth rows), their
corresponding residual images (the second, fourth, and sixth rows), and their corresponding
PSNR and SSIM values of the multispectral images toy, cloth, and feather. From Fig. 4, espe-
cially for the residual images, it is evident that the proposedmethod yields better reconstructed
results compared to the other methods.

2 The data is available at https://www.cs.columbia.edu/CAVE/databases/multispectral/.
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Fig. 6 Reconstructed results of light field images by different methods under compression ratio 0.9. From
top to bottom: the odd-numbered rows are the visual results of greek, dishes, and table, respectively; the
even-numbered rows are the corresponding residual images average over three color channels

6.2 Light Field Images Compression

We then consider three light field images,3 each with a size of 128 × 128 × 243, to verify
the effectiveness of the proposed method.

Figure5 shows the compression ratio with respect to relative error of the reconstructed
results by differentmethods. For overall relative errors, the suggested algorithm performs bet-
ter than the compared methods. Additionally, compared to the other three methods (HOSVD,

3 The data is available at http://hci-lightfield.iwr.uni-heidelberg.de.
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Fig. 7 The compression ratio versus relative error of the reconstructed results by different methods on three
videos

Fig. 8 Reconstructed results of videos by different methods under compression ratio 0.95. From top to bottom:
the odd-numbered rows are the visual results of bunny, carphone, and news, respectively; the even-numbered
rows are the corresponding residual images average over three color channels
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T-SVD, and TR-SVD), the TT-SVD method typically achieves a higher compression rate in
the case of equal relative error. The reason is that it fully utilizes the low-rankness of the
spatial and spectral dimensions. Although HOSVD method and TR-SVD method also take
advantage of the correlation of all dimensions, truncating different dimensions with the same
relative error (e.g., the HOSVD method truncates singular values in each dimension using
the same relative error ε/

√
3) cannot achieve satisfied compression performance. Note that

the TT-SVD method has produced positive results, the suggested new tensor decomposition
X = F ∗3 C ∗3 G ×3 H can significantly benefit from it.

Additionally, Fig. 6 shows the reconstructed results (the odd-numbered rows), their cor-
responding residual images (the even-numbered rows), and their corresponding PSNR and
SSIM values of the light field images greek, dishes, and table. As observed, the results
obtained by the proposed method are significantly superior to those of the compared ones,
especially for the recovery of objects in the images, such as statues in greek, bowls and spoons
in dishes, cabinets and plants in table.

6.3 Videos Compression

We finally evaluate the performance of the proposed method on three widely used color
videos sequence,4 each with a size of 144 × 176 × 150.

Figure7 shows the compression ratio with respect to relative error of the reconstructed
results by different methods. We observe that the proposed data compression algorithm out-
performs the compared methods for overall relative errors. Notice that videos frequently
feature moving objects and people, such as a flowing river in bunny, and a moving person
in carphone and news, which destroy the relevance of videos in spatial and temporal modes.
Similar to light field image compression, HOSVD and TT-SVD methods still achieve posi-
tive results while T-SVD and TR-SVD methods do not deliver satisfactory results in video
compression.

Additionally, Fig. 8 shows the reconstructed results (the odd-numbered rows), their cor-
responding residual images (the even-numbered rows), and their corresponding PSNR and
SSIM values of the videos bunny, carphone, and news. It is evident that the results obtained
by the proposed method are notably superior to those of the compared methods, particularly
in the recovery of moving objects in the images, such as river in bunny, person in carphone
and news.

6.4 Discussion

To comprehensively evaluate the potential of our GTD, we investigate its performance on
another representative task: tensor completion (TC). We conduct TC experiments on three
multispectral images (i.e., Toy, Cloth, and Feather). All data are normalized to [0, 1]. Incom-
plete data are generated by randomly sampling elements of the data with three sampling rates
(SRs): 1%, 5%, and 10%.

Four methods are selected as compared methods, including Tucker decomposition-based
method HaLRTC [26], tensor singular value decomposition-based method TF-TC [48], TT
decomposition-based method TT-TC [27], and TR decomposition-based method TR-TC
[44]. For fairness, TF-TC, TT-TC, TR-TC, and our GTD-TC models are all solved using
the proximal alternating minimization (PAM) algorithm [1]. The algorithm parameters are

4 The data is available at http://trace.eas.asu.edu/yuv/.
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set as follows: proximal parameter ρ = 0.1, maximum iteration number tmax = 1000, and
stopping criteria ‖X t+1 − X t‖F/‖X t‖F ≤ 10−5. Additionally, the parameters of HaLRTC
are set to ( 13 ,

1
3 ,

1
3 ). The parameters of TF-TC, TT-TC, TR-TC, and GTD-TC are tubal rank

(i.e., RTub), TT rank (i.e., (RTT
1 , RTT

2 )), TR rank (i.e., (RTR
1 , RTR

2 , RTR
3 )), and GTD rank (i.e.,

(RGTD
1 , RGTD

2 )), respectively, which are manually adjusted to achieve the best performance.
Specifically, the adjusted tensor ranks for the three multispectral images under different SRs
are provided in Table 3.

Table 4 reports the PSNR and SSIM values of the recovered multispectral images
by different recovered methods under different SRs. From Table 4, we can observe that
our decomposition outperforms the classical tensor decompositions in most cases, which
validates the superiority of the proposed tensor decomposition on TC task.

7 Conclusion

In this paper, we first define a heterogeneous tensor product that enables us to better char-
acterize the heterogeneous correlation along the mode of the real-world data. In addition,
this heterogeneous tensor product can degenerate into the mode product and the Tk-product.
Based on this heterogeneous tensor product, we propose a GTD framework, which helps
to discover numerous novel tensor decompositions. Subsequently, for the data compression
problem, we flexibly choose a new tensor decomposition within the GTD framework and
design the corresponding compression algorithm. Extensive experimental results verify the
effectiveness of the developed tensor decomposition in comparison to other existing tensor
decompositions.

We believe that our framework still offers significant potential for exploration. In the
future, we will explore simple and efficient methods that can find a suitable GTD under the
GDT framework for different types of data and applications.
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